更新时间:作者:小小条
1. 题目:已知两角一边,求边与面积

在三角形ABC中,已知A = 30°,B = 45°,边a = 10。求:
(1) 边b的长度
(2) 边c的长度
(3) 三角形面积S
解答:
(1) 求角C:
C = 180° - 30° - 45° = 105°
(2) 用正弦定理求边b:
根据正弦定理:a/sinA = b/sinB
10/sin30° = b/sin45°
10/0.5 = b/(√2/2)
20 = b/(√2/2)
b = 20 × (√2/2) = 10√2
(3) 用正弦定理求边c:
a/sinA = c/sinC
20 = c/sin105°
sin105° = sin(60°+45°) = (√3/2)(√2/2) + (1/2)(√2/2) = (√6 + √2)/4
c = 20 × (√6 + √2)/4 = 5(√6 + √2)
(4) 用面积公式求面积S:
S = (1/2)ab sinC = (1/2)×10×10√2×(√6 + √2)/4
= 25√2 × (√6 + √2)/4 = 25(2√3 + 2)/4 = (25/2)(√3 + 1)
答案: b = 10√2, c = 5(√6 + √2), S = (25/2)(√3 + 1)
2. 题目:已知两边及夹角,求边与面积
在三角形ABC中,已知b = 8,c = 5,角A = 60°。求:
(1) 边a的长度
(2) 三角形面积S
解答:
(1) 用余弦定理求边a:
a² = b² + c² - 2bc cosA
= 64 + 25 - 2×8×5×cos60°
= 89 - 80×0.5 = 89 - 40 = 49
a = 7
(2) 用面积公式求面积S:
S = (1/2)bc sinA = (1/2)×8×5×sin60°
= 20×(√3/2) = 10√3
答案: a = 7, S = 10√3
3. 题目:已知三边,求角
在三角形ABC中,已知a = 7, b = 5, c = 8。求角C。
解答:
用余弦定理求角C:
cosC = (a² + b² - c²)/(2ab)
= (49 + 25 - 64)/(2×7×5)
= 10/70 = 1/7
C = arccos(1/7)
答案: C = arccos(1/7)
4. 题目:已知两边及一对角,判断解的个数并求解
在三角形ABC中,已知a = 8, b = 10,角B = 30°。判断此三角形解的个数。若存在,求出角A。
解答:
这是一个边边角情况,需要判断解的个数。
(1) 计算高h:h = a sinB = 8×0.5 = 4
(2) 比较边长判断:
b = 10(已知角的对边),a = 8(已知角的一条邻边)
因为a > h 且 a < b(即4 < 8 < 10)
根据判定法则,此时三角形有两解
(3) 用正弦定理求角A:
a/sinA = b/sinB
8/sinA = 10/0.5 = 20
sinA = 8/20 = 0.4
A₁ = arcsin0.4(锐角)
A₂ = 180° - arcsin0.4(钝角)
因为A₁ + B < 180° 且 A₂ + B < 180°,所以两解都成立
答案: 两解, A₁ = arcsin(2/5), A₂ = 180° - arcsin(2/5)
5. 题目:求角平分线长度
在三角形ABC中,AB = 6, AC = 4,角A = 60°。AD是角A的平分线,交BC于D。求AD的长。
解答:
设AD = x
根据角平分线性质:BD/DC = AB/AC = 6/4 = 3/2
用面积法:
S△ABC = S△ABD + S△ADC
(1/2)×AB×AC×sinA = (1/2)×AB×AD×sin(A/2) + (1/2)×AC×AD×sin(A/2)
(1/2)×6×4×sin60° = (1/2)×6×x×sin30° + (1/2)×4×x×sin30°
12×(√3/2) = (3x + 2x)×(1/2)
6√3 = 5x/2
x = 12√3/5
答案: AD = 12√3/5
6. 题目:判断三角形形状
在三角形ABC中,已知(a + b + c)(a + b - c) = 3ab。判断三角形的形状。
解答:
化简已知等式:
(a + b + c)(a + b - c) = 3ab
(a + b)² - c² = 3ab
a² + 2ab + b² - c² = 3ab
a² + b² - c² = ab
联系余弦定理:
c² = a² + b² - 2ab cosC ⇒ a² + b² - c² = 2ab cosC
代入上式:2ab cosC = ab
因为ab ≠ 0,两边除以ab:2cosC = 1
cosC = 1/2
C = 60°
答案: 有一个角为60°的三角形
希望这6道题能帮助你巩固解三角形的知识!
版权声明:本文转载于今日头条,版权归作者所有,如果侵权,请联系本站编辑删除