更新时间:作者:小小条
PART-1
空间向量基本定理
1、共线向量定理

两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
PART-2
空间向量规定
1.长度为0的向量叫做零向量,记为0。
2.模为1的向量称为单位向量。
3.与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。
4.方向相等且模相等的向量称为相等向量。
PART-3
简单常识
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB
2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R).
4、利用向量证a⊥b,就是分别在a,b上取向量a·b=0 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取 a,b,求:<a,b> 的问题.
6、利用向量求距离即求向量的模问题.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标
私信我领取全套免费学*资料
版权声明:本文转载于今日头条,版权归作者所有,如果侵权,请联系本站编辑删除