网站首页
手机版

高一必看分段函数求参数4道题并解答学会就是赚到

更新时间:作者:小小条

分段函数求参数是高一函数部分的一个关键考点,主要考察的是分类讨论思想和对函数定义的理解。这里为你精心准备了4道从易到难的典型题,并附上详细解答,帮你彻底掌握这个题型。

核心解题思路

1 看清分段点:明确函数在哪个点发生变化

高一必看分段函数求参数4道题并解答学会就是赚到

2 代入对应解析式:根据给出的自变量x的值,选择正确的函数片段进行计算

3 建立方程:利用给定的函数值f(x),代入对应的解析式,建立一个关于参数的方程

4 解方程:求解参数

5 检验(关键步骤!):检查求出的参数是否满足该片段的自变量取值范围。如果不满足,则需舍去


【题组训练】4道经典题详解

1 基础入门(求函数值)

已知分段函数

当 x≤ 0 时,f(x) = x + 2

当 0< x ≤ 2 时,f(x) = x²

当 x> 2 时,f(x) = (1/2)x + 1

求 f(-1),f(1),f(3) 的值

解答:

这道题旨在帮助你熟悉如何选择正确的解析式

1 求 f(-1):x = -1,满足 x ≤ 0,使用第一个解析式 f(x) = x + 2。计算:f(-1) = (-1) + 2 = 1

2 求 f(1):x= 1,满足 0 < x ≤ 2,使用第二个解析式 f(x) = x²。计算:f(1) = 1² = 1

3 求 f(3):x= 3,满足 x > 2,使用第三个解析式 f(x) = (1/2)x + 1。计算:f(3) = (1/2) × 3 + 1 = 2.5

答案:f(-1) = 1,f(1) = 1,f(3) = 5/2


2 单一参数求解

已知函数

当 x< 1 时,f(x) = x² + 2a

当 x≥ 1 时,f(x) = -x

且 f(0) = 4,求实数 a 的值

解答:

1 确定解析式:题目给出 f(0),由于 0 < 1,应使用第一个解析式 f(x) = x² + 2a

2 建立方程:f(0)= 0² + 2a = 2a,且 f(0) = 4,故 2a = 4

3 解方程:a= 2

4 检验:a= 2 不影响 x < 1 的取值范围,解合理

答案:a = 2


3 含参分段点求值

已知函数

当 x≤ 1 时,f(x) = 2x + a

当 x> 1 时,f(x) = -x + 2a

若 f(1) = 5,求 a 的值

解答:

这道题的陷阱在于分段点 x= 1 本身。必须严格按照定义来

1 确定解析式:分段点是 x = 1,定义中当 x ≤ 1 时使用第一个解析式。所以计算 f(1) 必须使用 f(x) = 2x + a(注意:虽然 x = 1 是分界点,但它明确被划分到第一个区间)

2 建立方程:f(1)= 2 × 1 + a = 2 + a,且 f(1) = 5,故 2 + a = 5

3 解方程:a= 3

4 检验:a= 3 是常数,没有问题

答案:a = 3


4 综合进阶(函数无最小值问题)

已知函数

当 x≤ a 时,f(x) = x²

当 x> a 时,f(x) = x + 6

若函数 f(x) 在定义域 R 上没有最小值,求实数 a 的取值范围

解答:

这道题难度较大,考察数形结合和动态分析能力。"没有最小值"是题眼

1 分析图像:第一部分 f(x) = x² 是开口向上的抛物线,在顶点 x = 0 处取得最小值 0。第二部分 f(x) = x + 6 是一条单调递增的直线

2 理解"没有最小值":如果整个函数有最小值,通常是某个分段的最低点。抛物线部分的最低点是(0, 0)。但如果分段点 a 的位置不合适,可能会导致函数值无法取到这个最低点或趋于负无穷

3 分类讨论分段点 a 的位置:

3.1 当 a < 0:分段点 a 在抛物线顶点 x = 0 左边。在区间 (a, 0] 上,抛物线下降。整个函数的最小值是抛物线的顶点 0。结论:此时函数有最小值 0,不符合题意

3.2 当 a ≥ 0:分段点 a 在抛物线顶点右边。抛物线部分 (-∞, a] 能取到最小值 0。直线部分在 x > a 时,函数值均大于 a + 6 ≥ 6 > 0。整个函数的最小值仍然是 0。结论:此时函数也有最小值 0,不符合题意

4 重新审题与深度思考:我们发现无论 a 取何值,函数最小值都是 0。因为抛物线 y= x² 值域为 [0, +∞),直线 y = x + 6 是递增的,两者都不会趋于负无穷。因此,这个函数图像始终包含最低点 0

5 最终答案:不存在这样的实数 a 使得 f(x)没有最小值。即实数 a 的取值范围是空集 ∅

这个结果可能出乎意料,但这正是此题的精妙之处,它迫使你深入分析函数的本质,而不是机械套用方法

总结

1 定位:永远是第一步,确定自变量所在的区间,选择正确的解析式

2 代入:将已知条件代入,建立方程

3 求解:解出参数

4 检验:确保解出的参数符合该解析式自变量的取值范围

把这4道题搞懂,特别是理解第3题和第4题的思维过程,分段函数求参数的问题你就基本通关了!加油!


版权声明:本文转载于今日头条,版权归作者所有,如果侵权,请联系本站编辑删除

为您推荐

高中数学《分段函数单调性的四大题型》

上一篇文章分享了“函数值域的八大求解方法及题型”。本文继续分享“分段函数的四大题型”。需要的朋友可以收藏保存学习。知识点梳理典例一典例二典例三典例四以上就是本文

2026-01-11 08:15

2017年高考数学必知分段函数11个命题维度

【经典题再现】考点:分段函数,周期性质【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转

2026-01-11 08:14

分段函数题型归纳

版权声明:本文转载于今日头条,版权归作者所有,如果侵权,请联系本站编辑删除

2026-01-11 08:14

杭州求是新理想高复:最高697分杭州这个班今年高考实现全员逆袭

周六,浙江公布2020年高考各类别分段线,考生也可以开始查询成绩。杭州求是新理想高复,今年的高考成绩相当亮眼,还有学生接到了北大招办老师的电话—— 热烈祝贺杭州求是新理想高

2026-01-11 08:13

北京燕京实验中学正式加入北京市第八十中教育集团

聚力同行,智起新程!斐洛家族教育办公室合作校区北京燕京实验中学正式加入北京市第八十中教育集团! 教育,是共筑生态、衔接未来的深沉耕耘;集团化办学,是汇聚智慧、贯通路径的战略

2026-01-11 08:13

山西大学附中2025五大学科竞赛圆满收官:2集8金49银8铜

2025年,山西大学附中学科竞赛战线再传强音!随着第41届全国中学生数学冬令营圆满闭幕,山西大学附中以一场顶级赛事的成功承办与一份沉甸甸的荣誉榜单,再次交出了2025年竞赛的完美

2026-01-11 08:12